Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

β3 Adrenergic Stimulation Restores Nitric Oxide/Redox Balance and Enhances Endothelial Function in Hyperglycemia.

Identifieur interne : 000398 ( Main/Exploration ); précédent : 000397; suivant : 000399

β3 Adrenergic Stimulation Restores Nitric Oxide/Redox Balance and Enhances Endothelial Function in Hyperglycemia.

Auteurs : Keyvan Karimi Galougahi [États-Unis] ; Chia-Chi Liu [Australie] ; Alvaro Garcia [Australie] ; Carmine Gentile [Australie] ; Natasha A. Fry [Australie] ; Elisha J. Hamilton [Australie] ; Clare L. Hawkins [Australie] ; Gemma A. Figtree [Australie]

Source :

RBID : pubmed:26896479

Descripteurs français

English descriptors

Abstract

BACKGROUND

Perturbed balance between NO and O2 (•-). (ie, NO/redox imbalance) is central in the pathobiology of diabetes-induced vascular dysfunction. We examined whether stimulation of β3 adrenergic receptors (β3 ARs), coupled to endothelial nitric oxide synthase (eNOS) activation, would re-establish NO/redox balance, relieve oxidative inhibition of the membrane proteins eNOS and Na(+)-K(+) (NK) pump, and improve vascular function in a new animal model of hyperglycemia.

METHODS AND RESULTS

We established hyperglycemia in male White New Zealand rabbits by infusion of S961, a competitive high-affinity peptide inhibitor of the insulin receptor. Hyperglycemia impaired endothelium-dependent vasorelaxation by "uncoupling" of eNOS via glutathionylation (eNOS-GSS) that was dependent on NADPH oxidase activity. Accordingly, NO levels were lower while O2 (•-) levels were higher in hyperglycemic rabbits. Infusion of the β3 AR agonist CL316243 (CL) decreased eNOS-GSS, reduced O2 (•-), restored NO levels, and improved endothelium-dependent relaxation. CL decreased hyperglycemia-induced NADPH oxidase activation as suggested by co-immunoprecipitation experiments, and it increased eNOS co-immunoprecipitation with glutaredoxin-1, which may reflect promotion of eNOS de-glutathionylation by CL. Moreover, CL reversed hyperglycemia-induced glutathionylation of the β1 NK pump subunit that causes NK pump inhibition, and improved K(+)-induced vasorelaxation that reflects enhancement in NK pump activity. Lastly, eNOS-GSS was higher in vessels of diabetic patients and was reduced by CL, suggesting potential significance of the experimental findings in human diabetes.

CONCLUSIONS

β3 AR activation restored NO/redox balance and improved endothelial function in hyperglycemia. β3 AR agonists may confer protection against diabetes-induced vascular dysfunction.


DOI: 10.1161/JAHA.115.002824
PubMed: 26896479
PubMed Central: PMC4802476


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">β3 Adrenergic Stimulation Restores Nitric Oxide/Redox Balance and Enhances Endothelial Function in Hyperglycemia.</title>
<author>
<name sortKey="Karimi Galougahi, Keyvan" sort="Karimi Galougahi, Keyvan" uniqKey="Karimi Galougahi K" first="Keyvan" last="Karimi Galougahi">Keyvan Karimi Galougahi</name>
<affiliation wicri:level="2">
<nlm:affiliation>North Shore Heart Research Group, Kolling Institute, University of Sydney, Australia University of Sydney Medical School Foundation, Sydney, Australia Columbia University Medical Center, New York, NY.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">État de New York</region>
</placeName>
<wicri:cityArea>North Shore Heart Research Group, Kolling Institute, University of Sydney, Australia University of Sydney Medical School Foundation, Sydney, Australia Columbia University Medical Center, New York</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Liu, Chia Chi" sort="Liu, Chia Chi" uniqKey="Liu C" first="Chia-Chi" last="Liu">Chia-Chi Liu</name>
<affiliation wicri:level="4">
<nlm:affiliation>North Shore Heart Research Group, Kolling Institute, University of Sydney, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>North Shore Heart Research Group, Kolling Institute, University of Sydney</wicri:regionArea>
<placeName>
<settlement type="city">Sydney</settlement>
<region type="état">Nouvelle-Galles du Sud</region>
</placeName>
<orgName type="university">Université de Sydney</orgName>
</affiliation>
</author>
<author>
<name sortKey="Garcia, Alvaro" sort="Garcia, Alvaro" uniqKey="Garcia A" first="Alvaro" last="Garcia">Alvaro Garcia</name>
<affiliation wicri:level="4">
<nlm:affiliation>North Shore Heart Research Group, Kolling Institute, University of Sydney, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>North Shore Heart Research Group, Kolling Institute, University of Sydney</wicri:regionArea>
<placeName>
<settlement type="city">Sydney</settlement>
<region type="état">Nouvelle-Galles du Sud</region>
</placeName>
<orgName type="university">Université de Sydney</orgName>
</affiliation>
</author>
<author>
<name sortKey="Gentile, Carmine" sort="Gentile, Carmine" uniqKey="Gentile C" first="Carmine" last="Gentile">Carmine Gentile</name>
<affiliation wicri:level="4">
<nlm:affiliation>School of Medicine, University of Sydney, Australia Heart Research Institute, Sydney, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>School of Medicine, University of Sydney, Australia Heart Research Institute, Sydney</wicri:regionArea>
<placeName>
<settlement type="city">Sydney</settlement>
<region type="état">Nouvelle-Galles du Sud</region>
</placeName>
<orgName type="university">Université de Sydney</orgName>
</affiliation>
</author>
<author>
<name sortKey="Fry, Natasha A" sort="Fry, Natasha A" uniqKey="Fry N" first="Natasha A" last="Fry">Natasha A. Fry</name>
<affiliation wicri:level="4">
<nlm:affiliation>North Shore Heart Research Group, Kolling Institute, University of Sydney, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>North Shore Heart Research Group, Kolling Institute, University of Sydney</wicri:regionArea>
<placeName>
<settlement type="city">Sydney</settlement>
<region type="état">Nouvelle-Galles du Sud</region>
</placeName>
<orgName type="university">Université de Sydney</orgName>
</affiliation>
</author>
<author>
<name sortKey="Hamilton, Elisha J" sort="Hamilton, Elisha J" uniqKey="Hamilton E" first="Elisha J" last="Hamilton">Elisha J. Hamilton</name>
<affiliation wicri:level="4">
<nlm:affiliation>North Shore Heart Research Group, Kolling Institute, University of Sydney, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>North Shore Heart Research Group, Kolling Institute, University of Sydney</wicri:regionArea>
<placeName>
<settlement type="city">Sydney</settlement>
<region type="état">Nouvelle-Galles du Sud</region>
</placeName>
<orgName type="university">Université de Sydney</orgName>
</affiliation>
</author>
<author>
<name sortKey="Hawkins, Clare L" sort="Hawkins, Clare L" uniqKey="Hawkins C" first="Clare L" last="Hawkins">Clare L. Hawkins</name>
<affiliation wicri:level="3">
<nlm:affiliation>Heart Research Institute, Sydney, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Heart Research Institute, Sydney</wicri:regionArea>
<placeName>
<settlement type="city">Sydney</settlement>
<region type="état">Nouvelle-Galles du Sud</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Figtree, Gemma A" sort="Figtree, Gemma A" uniqKey="Figtree G" first="Gemma A" last="Figtree">Gemma A. Figtree</name>
<affiliation wicri:level="4">
<nlm:affiliation>North Shore Heart Research Group, Kolling Institute, University of Sydney, Australia Department of Cardiology, Royal North Shore Hospital, Sydney, Australia gemma.figtree@sydney.edu.au.</nlm:affiliation>
<country wicri:rule="url">Australie</country>
<wicri:regionArea>North Shore Heart Research Group, Kolling Institute, University of Sydney, Australia Department of Cardiology, Royal North Shore Hospital, Sydney</wicri:regionArea>
<placeName>
<settlement type="city">Sydney</settlement>
<region type="état">Nouvelle-Galles du Sud</region>
</placeName>
<orgName type="university">Université de Sydney</orgName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2016">2016</date>
<idno type="RBID">pubmed:26896479</idno>
<idno type="pmid">26896479</idno>
<idno type="doi">10.1161/JAHA.115.002824</idno>
<idno type="pmc">PMC4802476</idno>
<idno type="wicri:Area/Main/Corpus">000460</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000460</idno>
<idno type="wicri:Area/Main/Curation">000460</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000460</idno>
<idno type="wicri:Area/Main/Exploration">000460</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">β3 Adrenergic Stimulation Restores Nitric Oxide/Redox Balance and Enhances Endothelial Function in Hyperglycemia.</title>
<author>
<name sortKey="Karimi Galougahi, Keyvan" sort="Karimi Galougahi, Keyvan" uniqKey="Karimi Galougahi K" first="Keyvan" last="Karimi Galougahi">Keyvan Karimi Galougahi</name>
<affiliation wicri:level="2">
<nlm:affiliation>North Shore Heart Research Group, Kolling Institute, University of Sydney, Australia University of Sydney Medical School Foundation, Sydney, Australia Columbia University Medical Center, New York, NY.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">État de New York</region>
</placeName>
<wicri:cityArea>North Shore Heart Research Group, Kolling Institute, University of Sydney, Australia University of Sydney Medical School Foundation, Sydney, Australia Columbia University Medical Center, New York</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Liu, Chia Chi" sort="Liu, Chia Chi" uniqKey="Liu C" first="Chia-Chi" last="Liu">Chia-Chi Liu</name>
<affiliation wicri:level="4">
<nlm:affiliation>North Shore Heart Research Group, Kolling Institute, University of Sydney, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>North Shore Heart Research Group, Kolling Institute, University of Sydney</wicri:regionArea>
<placeName>
<settlement type="city">Sydney</settlement>
<region type="état">Nouvelle-Galles du Sud</region>
</placeName>
<orgName type="university">Université de Sydney</orgName>
</affiliation>
</author>
<author>
<name sortKey="Garcia, Alvaro" sort="Garcia, Alvaro" uniqKey="Garcia A" first="Alvaro" last="Garcia">Alvaro Garcia</name>
<affiliation wicri:level="4">
<nlm:affiliation>North Shore Heart Research Group, Kolling Institute, University of Sydney, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>North Shore Heart Research Group, Kolling Institute, University of Sydney</wicri:regionArea>
<placeName>
<settlement type="city">Sydney</settlement>
<region type="état">Nouvelle-Galles du Sud</region>
</placeName>
<orgName type="university">Université de Sydney</orgName>
</affiliation>
</author>
<author>
<name sortKey="Gentile, Carmine" sort="Gentile, Carmine" uniqKey="Gentile C" first="Carmine" last="Gentile">Carmine Gentile</name>
<affiliation wicri:level="4">
<nlm:affiliation>School of Medicine, University of Sydney, Australia Heart Research Institute, Sydney, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>School of Medicine, University of Sydney, Australia Heart Research Institute, Sydney</wicri:regionArea>
<placeName>
<settlement type="city">Sydney</settlement>
<region type="état">Nouvelle-Galles du Sud</region>
</placeName>
<orgName type="university">Université de Sydney</orgName>
</affiliation>
</author>
<author>
<name sortKey="Fry, Natasha A" sort="Fry, Natasha A" uniqKey="Fry N" first="Natasha A" last="Fry">Natasha A. Fry</name>
<affiliation wicri:level="4">
<nlm:affiliation>North Shore Heart Research Group, Kolling Institute, University of Sydney, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>North Shore Heart Research Group, Kolling Institute, University of Sydney</wicri:regionArea>
<placeName>
<settlement type="city">Sydney</settlement>
<region type="état">Nouvelle-Galles du Sud</region>
</placeName>
<orgName type="university">Université de Sydney</orgName>
</affiliation>
</author>
<author>
<name sortKey="Hamilton, Elisha J" sort="Hamilton, Elisha J" uniqKey="Hamilton E" first="Elisha J" last="Hamilton">Elisha J. Hamilton</name>
<affiliation wicri:level="4">
<nlm:affiliation>North Shore Heart Research Group, Kolling Institute, University of Sydney, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>North Shore Heart Research Group, Kolling Institute, University of Sydney</wicri:regionArea>
<placeName>
<settlement type="city">Sydney</settlement>
<region type="état">Nouvelle-Galles du Sud</region>
</placeName>
<orgName type="university">Université de Sydney</orgName>
</affiliation>
</author>
<author>
<name sortKey="Hawkins, Clare L" sort="Hawkins, Clare L" uniqKey="Hawkins C" first="Clare L" last="Hawkins">Clare L. Hawkins</name>
<affiliation wicri:level="3">
<nlm:affiliation>Heart Research Institute, Sydney, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Heart Research Institute, Sydney</wicri:regionArea>
<placeName>
<settlement type="city">Sydney</settlement>
<region type="état">Nouvelle-Galles du Sud</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Figtree, Gemma A" sort="Figtree, Gemma A" uniqKey="Figtree G" first="Gemma A" last="Figtree">Gemma A. Figtree</name>
<affiliation wicri:level="4">
<nlm:affiliation>North Shore Heart Research Group, Kolling Institute, University of Sydney, Australia Department of Cardiology, Royal North Shore Hospital, Sydney, Australia gemma.figtree@sydney.edu.au.</nlm:affiliation>
<country wicri:rule="url">Australie</country>
<wicri:regionArea>North Shore Heart Research Group, Kolling Institute, University of Sydney, Australia Department of Cardiology, Royal North Shore Hospital, Sydney</wicri:regionArea>
<placeName>
<settlement type="city">Sydney</settlement>
<region type="état">Nouvelle-Galles du Sud</region>
</placeName>
<orgName type="university">Université de Sydney</orgName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of the American Heart Association</title>
<idno type="eISSN">2047-9980</idno>
<imprint>
<date when="2016" type="published">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adrenergic beta-3 Receptor Agonists (pharmacology)</term>
<term>Animals (MeSH)</term>
<term>Blood Glucose (drug effects)</term>
<term>Blood Glucose (metabolism)</term>
<term>Diabetes Mellitus, Experimental (chemically induced)</term>
<term>Diabetes Mellitus, Experimental (drug therapy)</term>
<term>Diabetes Mellitus, Experimental (enzymology)</term>
<term>Diabetes Mellitus, Experimental (physiopathology)</term>
<term>Diabetic Angiopathies (chemically induced)</term>
<term>Diabetic Angiopathies (enzymology)</term>
<term>Diabetic Angiopathies (physiopathology)</term>
<term>Diabetic Angiopathies (prevention & control)</term>
<term>Dioxoles (pharmacology)</term>
<term>Dose-Response Relationship, Drug (MeSH)</term>
<term>Endothelium, Vascular (drug effects)</term>
<term>Endothelium, Vascular (enzymology)</term>
<term>Endothelium, Vascular (physiopathology)</term>
<term>Enzyme Activation (MeSH)</term>
<term>Glutathione (metabolism)</term>
<term>Hyperglycemia (chemically induced)</term>
<term>Hyperglycemia (drug therapy)</term>
<term>Hyperglycemia (enzymology)</term>
<term>Hyperglycemia (physiopathology)</term>
<term>Hypoglycemic Agents (pharmacology)</term>
<term>Male (MeSH)</term>
<term>NADPH Oxidases (metabolism)</term>
<term>Nitric Oxide (metabolism)</term>
<term>Nitric Oxide Synthase Type III (metabolism)</term>
<term>Oxidation-Reduction (MeSH)</term>
<term>Oxidative Stress (drug effects)</term>
<term>Peptides (MeSH)</term>
<term>Rabbits (MeSH)</term>
<term>Receptors, Adrenergic, beta-3 (drug effects)</term>
<term>Receptors, Adrenergic, beta-3 (metabolism)</term>
<term>Signal Transduction (drug effects)</term>
<term>Sodium-Potassium-Exchanging ATPase (metabolism)</term>
<term>Superoxides (metabolism)</term>
<term>Time Factors (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Activation enzymatique (MeSH)</term>
<term>Agonistes des récepteurs bêta-3 adrénergiques (pharmacologie)</term>
<term>Angiopathies diabétiques (enzymologie)</term>
<term>Angiopathies diabétiques (induit chimiquement)</term>
<term>Angiopathies diabétiques (physiopathologie)</term>
<term>Angiopathies diabétiques (prévention et contrôle)</term>
<term>Animaux (MeSH)</term>
<term>Diabète expérimental (enzymologie)</term>
<term>Diabète expérimental (induit chimiquement)</term>
<term>Diabète expérimental (physiopathologie)</term>
<term>Diabète expérimental (traitement médicamenteux)</term>
<term>Dioxoles (pharmacologie)</term>
<term>Endothélium vasculaire (effets des médicaments et des substances chimiques)</term>
<term>Endothélium vasculaire (enzymologie)</term>
<term>Endothélium vasculaire (physiopathologie)</term>
<term>Facteurs temps (MeSH)</term>
<term>Glutathion (métabolisme)</term>
<term>Glycémie (effets des médicaments et des substances chimiques)</term>
<term>Glycémie (métabolisme)</term>
<term>Hyperglycémie (enzymologie)</term>
<term>Hyperglycémie (induit chimiquement)</term>
<term>Hyperglycémie (physiopathologie)</term>
<term>Hyperglycémie (traitement médicamenteux)</term>
<term>Hypoglycémiants (pharmacologie)</term>
<term>Lapins (MeSH)</term>
<term>Monoxyde d'azote (métabolisme)</term>
<term>Mâle (MeSH)</term>
<term>NADPH oxidase (métabolisme)</term>
<term>Nitric oxide synthase type III (métabolisme)</term>
<term>Oxydoréduction (MeSH)</term>
<term>Peptides (MeSH)</term>
<term>Relation dose-effet des médicaments (MeSH)</term>
<term>Récepteurs bêta-3 adrénergiques (effets des médicaments et des substances chimiques)</term>
<term>Récepteurs bêta-3 adrénergiques (métabolisme)</term>
<term>Sodium-Potassium-Exchanging ATPase (métabolisme)</term>
<term>Stress oxydatif (effets des médicaments et des substances chimiques)</term>
<term>Superoxydes (métabolisme)</term>
<term>Transduction du signal (effets des médicaments et des substances chimiques)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="drug effects" xml:lang="en">
<term>Blood Glucose</term>
<term>Receptors, Adrenergic, beta-3</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Blood Glucose</term>
<term>Glutathione</term>
<term>NADPH Oxidases</term>
<term>Nitric Oxide</term>
<term>Nitric Oxide Synthase Type III</term>
<term>Receptors, Adrenergic, beta-3</term>
<term>Sodium-Potassium-Exchanging ATPase</term>
<term>Superoxides</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Adrenergic beta-3 Receptor Agonists</term>
<term>Dioxoles</term>
<term>Hypoglycemic Agents</term>
</keywords>
<keywords scheme="MESH" qualifier="chemically induced" xml:lang="en">
<term>Diabetes Mellitus, Experimental</term>
<term>Diabetic Angiopathies</term>
<term>Hyperglycemia</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Endothelium, Vascular</term>
<term>Oxidative Stress</term>
<term>Signal Transduction</term>
</keywords>
<keywords scheme="MESH" qualifier="drug therapy" xml:lang="en">
<term>Diabetes Mellitus, Experimental</term>
<term>Hyperglycemia</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Endothélium vasculaire</term>
<term>Glycémie</term>
<term>Récepteurs bêta-3 adrénergiques</term>
<term>Stress oxydatif</term>
<term>Transduction du signal</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Angiopathies diabétiques</term>
<term>Diabète expérimental</term>
<term>Endothélium vasculaire</term>
<term>Hyperglycémie</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Diabetes Mellitus, Experimental</term>
<term>Diabetic Angiopathies</term>
<term>Endothelium, Vascular</term>
<term>Hyperglycemia</term>
</keywords>
<keywords scheme="MESH" qualifier="induit chimiquement" xml:lang="fr">
<term>Angiopathies diabétiques</term>
<term>Diabète expérimental</term>
<term>Hyperglycémie</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Glutathion</term>
<term>Glycémie</term>
<term>Monoxyde d'azote</term>
<term>NADPH oxidase</term>
<term>Nitric oxide synthase type III</term>
<term>Récepteurs bêta-3 adrénergiques</term>
<term>Sodium-Potassium-Exchanging ATPase</term>
<term>Superoxydes</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Agonistes des récepteurs bêta-3 adrénergiques</term>
<term>Dioxoles</term>
<term>Hypoglycémiants</term>
</keywords>
<keywords scheme="MESH" qualifier="physiopathologie" xml:lang="fr">
<term>Angiopathies diabétiques</term>
<term>Diabète expérimental</term>
<term>Endothélium vasculaire</term>
<term>Hyperglycémie</term>
</keywords>
<keywords scheme="MESH" qualifier="physiopathology" xml:lang="en">
<term>Diabetes Mellitus, Experimental</term>
<term>Diabetic Angiopathies</term>
<term>Endothelium, Vascular</term>
<term>Hyperglycemia</term>
</keywords>
<keywords scheme="MESH" qualifier="prevention & control" xml:lang="en">
<term>Diabetic Angiopathies</term>
</keywords>
<keywords scheme="MESH" qualifier="prévention et contrôle" xml:lang="fr">
<term>Angiopathies diabétiques</term>
</keywords>
<keywords scheme="MESH" qualifier="traitement médicamenteux" xml:lang="fr">
<term>Diabète expérimental</term>
<term>Hyperglycémie</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Dose-Response Relationship, Drug</term>
<term>Enzyme Activation</term>
<term>Male</term>
<term>Oxidation-Reduction</term>
<term>Peptides</term>
<term>Rabbits</term>
<term>Time Factors</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Activation enzymatique</term>
<term>Animaux</term>
<term>Facteurs temps</term>
<term>Lapins</term>
<term>Mâle</term>
<term>Oxydoréduction</term>
<term>Peptides</term>
<term>Relation dose-effet des médicaments</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>Perturbed balance between NO and O2 (•-). (ie, NO/redox imbalance) is central in the pathobiology of diabetes-induced vascular dysfunction. We examined whether stimulation of β3 adrenergic receptors (β3 ARs), coupled to endothelial nitric oxide synthase (eNOS) activation, would re-establish NO/redox balance, relieve oxidative inhibition of the membrane proteins eNOS and Na(+)-K(+) (NK) pump, and improve vascular function in a new animal model of hyperglycemia.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>METHODS AND RESULTS</b>
</p>
<p>We established hyperglycemia in male White New Zealand rabbits by infusion of S961, a competitive high-affinity peptide inhibitor of the insulin receptor. Hyperglycemia impaired endothelium-dependent vasorelaxation by "uncoupling" of eNOS via glutathionylation (eNOS-GSS) that was dependent on NADPH oxidase activity. Accordingly, NO levels were lower while O2 (•-) levels were higher in hyperglycemic rabbits. Infusion of the β3 AR agonist CL316243 (CL) decreased eNOS-GSS, reduced O2 (•-), restored NO levels, and improved endothelium-dependent relaxation. CL decreased hyperglycemia-induced NADPH oxidase activation as suggested by co-immunoprecipitation experiments, and it increased eNOS co-immunoprecipitation with glutaredoxin-1, which may reflect promotion of eNOS de-glutathionylation by CL. Moreover, CL reversed hyperglycemia-induced glutathionylation of the β1 NK pump subunit that causes NK pump inhibition, and improved K(+)-induced vasorelaxation that reflects enhancement in NK pump activity. Lastly, eNOS-GSS was higher in vessels of diabetic patients and was reduced by CL, suggesting potential significance of the experimental findings in human diabetes.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSIONS</b>
</p>
<p>β3 AR activation restored NO/redox balance and improved endothelial function in hyperglycemia. β3 AR agonists may confer protection against diabetes-induced vascular dysfunction.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">26896479</PMID>
<DateCompleted>
<Year>2017</Year>
<Month>01</Month>
<Day>10</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>12</Month>
<Day>10</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">2047-9980</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>5</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2016</Year>
<Month>Feb</Month>
<Day>19</Day>
</PubDate>
</JournalIssue>
<Title>Journal of the American Heart Association</Title>
<ISOAbbreviation>J Am Heart Assoc</ISOAbbreviation>
</Journal>
<ArticleTitle>β3 Adrenergic Stimulation Restores Nitric Oxide/Redox Balance and Enhances Endothelial Function in Hyperglycemia.</ArticleTitle>
<ELocationID EIdType="doi" ValidYN="Y">10.1161/JAHA.115.002824</ELocationID>
<ELocationID EIdType="pii" ValidYN="Y">e002824</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">Perturbed balance between NO and O2 (•-). (ie, NO/redox imbalance) is central in the pathobiology of diabetes-induced vascular dysfunction. We examined whether stimulation of β3 adrenergic receptors (β3 ARs), coupled to endothelial nitric oxide synthase (eNOS) activation, would re-establish NO/redox balance, relieve oxidative inhibition of the membrane proteins eNOS and Na(+)-K(+) (NK) pump, and improve vascular function in a new animal model of hyperglycemia.</AbstractText>
<AbstractText Label="METHODS AND RESULTS" NlmCategory="RESULTS">We established hyperglycemia in male White New Zealand rabbits by infusion of S961, a competitive high-affinity peptide inhibitor of the insulin receptor. Hyperglycemia impaired endothelium-dependent vasorelaxation by "uncoupling" of eNOS via glutathionylation (eNOS-GSS) that was dependent on NADPH oxidase activity. Accordingly, NO levels were lower while O2 (•-) levels were higher in hyperglycemic rabbits. Infusion of the β3 AR agonist CL316243 (CL) decreased eNOS-GSS, reduced O2 (•-), restored NO levels, and improved endothelium-dependent relaxation. CL decreased hyperglycemia-induced NADPH oxidase activation as suggested by co-immunoprecipitation experiments, and it increased eNOS co-immunoprecipitation with glutaredoxin-1, which may reflect promotion of eNOS de-glutathionylation by CL. Moreover, CL reversed hyperglycemia-induced glutathionylation of the β1 NK pump subunit that causes NK pump inhibition, and improved K(+)-induced vasorelaxation that reflects enhancement in NK pump activity. Lastly, eNOS-GSS was higher in vessels of diabetic patients and was reduced by CL, suggesting potential significance of the experimental findings in human diabetes.</AbstractText>
<AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">β3 AR activation restored NO/redox balance and improved endothelial function in hyperglycemia. β3 AR agonists may confer protection against diabetes-induced vascular dysfunction.</AbstractText>
<CopyrightInformation>© 2016 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Karimi Galougahi</LastName>
<ForeName>Keyvan</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>North Shore Heart Research Group, Kolling Institute, University of Sydney, Australia University of Sydney Medical School Foundation, Sydney, Australia Columbia University Medical Center, New York, NY.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Liu</LastName>
<ForeName>Chia-Chi</ForeName>
<Initials>CC</Initials>
<AffiliationInfo>
<Affiliation>North Shore Heart Research Group, Kolling Institute, University of Sydney, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Garcia</LastName>
<ForeName>Alvaro</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>North Shore Heart Research Group, Kolling Institute, University of Sydney, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Gentile</LastName>
<ForeName>Carmine</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>School of Medicine, University of Sydney, Australia Heart Research Institute, Sydney, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Fry</LastName>
<ForeName>Natasha A</ForeName>
<Initials>NA</Initials>
<AffiliationInfo>
<Affiliation>North Shore Heart Research Group, Kolling Institute, University of Sydney, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hamilton</LastName>
<ForeName>Elisha J</ForeName>
<Initials>EJ</Initials>
<AffiliationInfo>
<Affiliation>North Shore Heart Research Group, Kolling Institute, University of Sydney, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hawkins</LastName>
<ForeName>Clare L</ForeName>
<Initials>CL</Initials>
<AffiliationInfo>
<Affiliation>Heart Research Institute, Sydney, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Figtree</LastName>
<ForeName>Gemma A</ForeName>
<Initials>GA</Initials>
<AffiliationInfo>
<Affiliation>North Shore Heart Research Group, Kolling Institute, University of Sydney, Australia Department of Cardiology, Royal North Shore Hospital, Sydney, Australia gemma.figtree@sydney.edu.au.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2016</Year>
<Month>02</Month>
<Day>19</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>J Am Heart Assoc</MedlineTA>
<NlmUniqueID>101580524</NlmUniqueID>
<ISSNLinking>2047-9980</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D058667">Adrenergic beta-3 Receptor Agonists</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D001786">Blood Glucose</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004149">Dioxoles</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D007004">Hypoglycemic Agents</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010455">Peptides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D022702">Receptors, Adrenergic, beta-3</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C532752">S961 peptide</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>11062-77-4</RegistryNumber>
<NameOfSubstance UI="D013481">Superoxides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>138908-40-4</RegistryNumber>
<NameOfSubstance UI="C076126">disodium (R,R)-5-(2-((2-(3-chlorophenyl)-2-hydroxyethyl)-amino)propyl)-1,3-benzodioxole-2,3-dicarboxylate</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>31C4KY9ESH</RegistryNumber>
<NameOfSubstance UI="D009569">Nitric Oxide</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.14.13.39</RegistryNumber>
<NameOfSubstance UI="D052250">Nitric Oxide Synthase Type III</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.6.3.-</RegistryNumber>
<NameOfSubstance UI="D019255">NADPH Oxidases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 7.2.2.13</RegistryNumber>
<NameOfSubstance UI="D000254">Sodium-Potassium-Exchanging ATPase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>GAN16C9B8O</RegistryNumber>
<NameOfSubstance UI="D005978">Glutathione</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D058667" MajorTopicYN="N">Adrenergic beta-3 Receptor Agonists</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001786" MajorTopicYN="N">Blood Glucose</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003921" MajorTopicYN="N">Diabetes Mellitus, Experimental</DescriptorName>
<QualifierName UI="Q000139" MajorTopicYN="N">chemically induced</QualifierName>
<QualifierName UI="Q000188" MajorTopicYN="Y">drug therapy</QualifierName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
<QualifierName UI="Q000503" MajorTopicYN="N">physiopathology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003925" MajorTopicYN="N">Diabetic Angiopathies</DescriptorName>
<QualifierName UI="Q000139" MajorTopicYN="N">chemically induced</QualifierName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
<QualifierName UI="Q000503" MajorTopicYN="N">physiopathology</QualifierName>
<QualifierName UI="Q000517" MajorTopicYN="Y">prevention & control</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004149" MajorTopicYN="N">Dioxoles</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004305" MajorTopicYN="N">Dose-Response Relationship, Drug</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004730" MajorTopicYN="N">Endothelium, Vascular</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
<QualifierName UI="Q000503" MajorTopicYN="N">physiopathology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004789" MajorTopicYN="N">Enzyme Activation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005978" MajorTopicYN="N">Glutathione</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006943" MajorTopicYN="N">Hyperglycemia</DescriptorName>
<QualifierName UI="Q000139" MajorTopicYN="N">chemically induced</QualifierName>
<QualifierName UI="Q000188" MajorTopicYN="Y">drug therapy</QualifierName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
<QualifierName UI="Q000503" MajorTopicYN="N">physiopathology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007004" MajorTopicYN="N">Hypoglycemic Agents</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019255" MajorTopicYN="N">NADPH Oxidases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009569" MajorTopicYN="N">Nitric Oxide</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D052250" MajorTopicYN="N">Nitric Oxide Synthase Type III</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010084" MajorTopicYN="N">Oxidation-Reduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018384" MajorTopicYN="N">Oxidative Stress</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010455" MajorTopicYN="N">Peptides</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011817" MajorTopicYN="N">Rabbits</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D022702" MajorTopicYN="N">Receptors, Adrenergic, beta-3</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="N">Signal Transduction</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000254" MajorTopicYN="N">Sodium-Potassium-Exchanging ATPase</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013481" MajorTopicYN="N">Superoxides</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013997" MajorTopicYN="N">Time Factors</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">endothelial dysfunction</Keyword>
<Keyword MajorTopicYN="N">endothelial nitric oxide synthase</Keyword>
<Keyword MajorTopicYN="N">hyperglycemia</Keyword>
<Keyword MajorTopicYN="N">oxidative stress</Keyword>
<Keyword MajorTopicYN="N">β3 adrenergic receptors</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2016</Year>
<Month>2</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2016</Year>
<Month>2</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>1</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">26896479</ArticleId>
<ArticleId IdType="pii">JAHA.115.002824</ArticleId>
<ArticleId IdType="doi">10.1161/JAHA.115.002824</ArticleId>
<ArticleId IdType="pmc">PMC4802476</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Biochem Biophys Res Commun. 2000 Aug 28;275(2):672-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10964721</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Jul 20;276(29):26942-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11342546</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Pharm Des. 2001 Sep;7(14):1433-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11472270</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Res. 2001;50(6):537-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11829314</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Circulation. 2002 Apr 9;105(14):1656-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11940543</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2002 Feb;4(1):35-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11970841</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Blood Vessels. 1978;15(1-3):198-207</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">147117</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Circulation. 2004 Aug 24;110(8):948-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15302798</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Br J Pharmacol. 2005 Feb;144(3):317-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15655528</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Circulation. 2006 Apr 18;113(15):1888-904</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16618833</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Drug Discov Today. 2006 Jun;11(11-12):524-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16713904</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Circulation. 2006 Oct 3;114(14):1531-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17015805</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cardiovasc Res. 2007 Jul 15;75(2):349-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17568572</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Pharmacol. 2007 Aug;7(4):381-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17662654</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Pharmacol. 2007 Nov;72(5):1359-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17717109</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol Cell Physiol. 2008 Feb;294(2):C572-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18057120</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2008;3(1):8-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18193017</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2008 Nov 14;376(2):380-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18782558</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2008 Sep 22;182(6):1153-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18794328</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2009 May;11(5):1059-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19119916</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Physiol. 2009 Apr;94(4):400-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19151075</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cardiovasc Res. 2009 Apr 1;82(1):9-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19179352</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Circ Res. 2009 Jul 17;105(2):185-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19542013</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Investig Drugs. 2009 Sep;10(9):955-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19705338</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dis Model Mech. 2009 Sep-Oct;2(9-10):454-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19726805</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Mol Med. 2010 Oct;14(10):2359-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20406324</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Br J Pharmacol. 2010 Jul;160(5):1048-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20590599</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur Heart J. 2010 Nov;31(22):2741-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20974801</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Circ Res. 2010 Oct 29;107(9):1058-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21030723</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Circulation. 2010 Dec 21;122(25):2699-708</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21135361</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2010 Dec 23;468(7327):1115-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21179168</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arterioscler Thromb Vasc Biol. 2011 Oct;31(10):2223-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21757654</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Diabetes. 2011 Oct;60(10):2608-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21844097</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Leukoc Biol. 2012 Jun;91(6):947-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22457368</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2012 Jun 8;287(24):20674-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22535965</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Coll Cardiol. 2012 May 29;59(22):1979-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22624839</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Coll Cardiol. 2012 May 29;59(22):1988-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22624840</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol Renal Physiol. 2012 Sep;303(5):F775-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22674024</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Circ Res. 2012 Sep 28;111(8):1091-106</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23023511</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Cardiovasc Med. 2012 May;22(4):83-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23040838</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2012 Dec 15;53(12):2263-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23085513</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2013 Jan 4;288(1):561-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23139420</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ther Adv Endocrinol Metab. 2011 Apr;2(2):59-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23148171</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur Heart J. 2013 Aug;34(31):2436-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23641007</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Cell Cardiol. 2013 Sep;62:8-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23643588</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2013 Dec;65:563-572</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23816524</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2013 Sep 24;52(38):6712-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23977830</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Heart Assoc. 2014 Apr 22;3(2):e000731</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24755153</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol Cell Physiol. 2015 Sep 1;309(5):C286-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26063704</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol Cell Physiol. 2015 Aug 15;309(4):C239-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26084308</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol Cell Physiol. 2015 Sep 1;309(5):C283-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26179604</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Heart Assoc. 2016 Mar 15;5(3):e003196</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26979079</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Naunyn Schmiedebergs Arch Pharmacol. 1995 May;351(5):453-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7543976</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Australie</li>
<li>États-Unis</li>
</country>
<region>
<li>Nouvelle-Galles du Sud</li>
<li>État de New York</li>
</region>
<settlement>
<li>Sydney</li>
</settlement>
<orgName>
<li>Université de Sydney</li>
</orgName>
</list>
<tree>
<country name="États-Unis">
<region name="État de New York">
<name sortKey="Karimi Galougahi, Keyvan" sort="Karimi Galougahi, Keyvan" uniqKey="Karimi Galougahi K" first="Keyvan" last="Karimi Galougahi">Keyvan Karimi Galougahi</name>
</region>
</country>
<country name="Australie">
<region name="Nouvelle-Galles du Sud">
<name sortKey="Liu, Chia Chi" sort="Liu, Chia Chi" uniqKey="Liu C" first="Chia-Chi" last="Liu">Chia-Chi Liu</name>
</region>
<name sortKey="Figtree, Gemma A" sort="Figtree, Gemma A" uniqKey="Figtree G" first="Gemma A" last="Figtree">Gemma A. Figtree</name>
<name sortKey="Fry, Natasha A" sort="Fry, Natasha A" uniqKey="Fry N" first="Natasha A" last="Fry">Natasha A. Fry</name>
<name sortKey="Garcia, Alvaro" sort="Garcia, Alvaro" uniqKey="Garcia A" first="Alvaro" last="Garcia">Alvaro Garcia</name>
<name sortKey="Gentile, Carmine" sort="Gentile, Carmine" uniqKey="Gentile C" first="Carmine" last="Gentile">Carmine Gentile</name>
<name sortKey="Hamilton, Elisha J" sort="Hamilton, Elisha J" uniqKey="Hamilton E" first="Elisha J" last="Hamilton">Elisha J. Hamilton</name>
<name sortKey="Hawkins, Clare L" sort="Hawkins, Clare L" uniqKey="Hawkins C" first="Clare L" last="Hawkins">Clare L. Hawkins</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000398 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000398 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:26896479
   |texte=   β3 Adrenergic Stimulation Restores Nitric Oxide/Redox Balance and Enhances Endothelial Function in Hyperglycemia.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:26896479" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020